Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
The Ring Imaging Cherenkov Detector (RICH)Table of Contents | ||||||||
Added: | ||||||||
> > |
Cherenkov Strahlung und RICH DetektorHier finden Sie eine allgemeine Einfuehrung in die Grundlagen der Cherenkov Strahlung und ihre Nutzung in RICH Detektoren. | |||||||
RICH detector conceptThe RICH detector will serve for electron identification from lowest momenta up to 10-12 GeV/c needed for the study of the dielectronic decay channel of vector mesons. In the current CBM detector layout the RICH would be positioned behind the magnet with the silicon tracking system (STS/MVD) and in front of the first transition radiation detector (TRD), see the figure below for a sketch: |
Line: 1 to 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
The Ring Imaging Cherenkov Detector (RICH) | ||||||||||
Line: 142 to 142 | ||||||||||
Electron identification | ||||||||||
Changed: | ||||||||||
< < | With current, still preliminary simulations including the full CBM detector setup, ring recognition algorithms, ring-track matching algorithms and certain ring selection cuts the following results are achieved using STS and RICH information alone (Status as of Sep. 2006): | |||||||||
> > | With current, still preliminary simulations including the full CBM detector setup, ring recognition algorithms, ring-track matching algorithms and certain ring selection cuts the following results are achieved using STS and RICH information alone (Status as of Jan. 2007): | |||||||||
Changed: | ||||||||||
< < |
| |||||||||
> > |
| |||||||||
| ||||||||||
Changed: | ||||||||||
< < |
![]() | |||||||||
> > |
![]() | |||||||||
Changed: | ||||||||||
< < |
| |||||||||
> > |
| |||||||||
| ||||||||||
Changed: | ||||||||||
< < |
![]() | |||||||||
> > |
![]() | |||||||||
Changed: | ||||||||||
< < |
For the calculation of the pion-suppression all particles were identified as electrons which fall into a radius range of ![]() | |||||||||
> > |
For the calculation of the pion-suppression all particles were identified as electrons which fall into a radius range of ![]() | |||||||||
Presentations | ||||||||||
Line: 175 to 175 | ||||||||||
| ||||||||||
Changed: | ||||||||||
< < |
| |||||||||
> > |
|
Line: 1 to 1 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
The Ring Imaging Cherenkov Detector (RICH) | |||||||||||||||
Line: 124 to 124 | |||||||||||||||
Ring radius resolution | |||||||||||||||
Changed: | |||||||||||||||
< < |
First estimates on the ring radius resolution which is important for e-![]() ![]() | ||||||||||||||
> > |
First estimates on the ring radius resolution which is important for e-![]() ![]()
![]() ![]() ![]() | ||||||||||||||
Electron identification | |||||||||||||||
Line: 139 to 153 | |||||||||||||||
![]() | |||||||||||||||
Added: | |||||||||||||||
> > |
For the calculation of the pion-suppression all particles were identified as electrons which fall into a radius range of ![]() | ||||||||||||||
Presentations |
Line: 1 to 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
The Ring Imaging Cherenkov Detector (RICH) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Line: 78 to 78 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Highly granulated PMTs are foreseen as photodetectors. However, as the photodetector is the most important ingredient determining the final number of hits/ring, special care has to be taken to enhance the detection of photons from lower wavelengths. Basically two concepts are discussed currently:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Changed: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
< < |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
> > |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
RICH in simulations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Changed: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
< < | ... will come soon ... | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
> > |
The RICH detector is implemented in the CBM simulation framework (CBMroot) as introduced above:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ring radius resolution | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Added: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
> > |
First estimates on the ring radius resolution which is important for e-![]() ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electron identification | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Added: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
> > |
With current, still preliminary simulations including the full CBM detector setup, ring recognition algorithms, ring-track matching algorithms and certain ring selection cuts the following results are achieved using STS and RICH information alone (Status as of Sep. 2006):
![]()
![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Presentations
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Line: 108 to 160 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Added: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
> > |
|
Line: 1 to 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
The Ring Imaging Cherenkov Detector (RICH) | ||||||||||
Deleted: | ||||||||||
< < |
| |||||||||
Table of Contents | ||||||||||
Deleted: | ||||||||||
< < |
| |||||||||
RICH detector concept | ||||||||||
Line: 54 to 47 | ||||||||||
Figure 2: Momentum threshold for Cherenkov light production for pions and kaons in dependence on ![]() ![]() ![]() ![]() ![]() | ||||||||||
Changed: | ||||||||||
< < |
Nitrogen would fulfill all requirements, but also CO![]() ![]() | |||||||||
> > |
Nitrogen would fulfill all requirements, but also CO![]() ![]() | |||||||||
![]() | ||||||||||
Changed: | ||||||||||
< < |
| |||||||||
> > |
| |||||||||
![]() | ||||||||||
Added: | ||||||||||
> > |
![]() | |||||||||
Mirror | ||||||||||
Changed: | ||||||||||
< < | The most important consideration concerning the mirror material will come from global tracking simulations: STS and TRD tracks have to be connected with high precision which limits length and material budget of the RICH detector. The maximum length will determine the radius of curvature. And as the mirror gives the largest contribution to the material budget of the RICH, the maxium allowable radiation length will determine whether glass mirrors can be used or a lightweight material such as carbon has to be used. | |||||||||
> > | The most important consideration concerning the mirror material will come from global tracking simulations: STS and TRD tracks have to be connected with high precision which limits length and material budget of the RICH detector. The maximum length will determine the radius of curvature. And as the mirror gives the largest contribution to the material budget of the RICH, the maxium allowable radiation length will determine whether glass mirrors can be used or a lightweight material such as carbon has to be used. Currently, we aim at glass mirrors of 3-4mm thickness and a diameter of 50-60cm. Mirrors based on carbon fibres are kept als alternative. | |||||||||
The coating should provide highest reflection for the full range of photons not absorbed in the gas and detected by the photodetector, i.e. down to about 150nm. The choice will thus be a Al+MgF![]() | ||||||||||
Added: | ||||||||||
> > |
![]() | |||||||||
Photodetector | ||||||||||
Changed: | ||||||||||
< < | The photodetector | |||||||||
> > |
Highly granulated PMTs are foreseen as photodetectors. However, as the photodetector is the most important ingredient determining the final number of hits/ring, special care has to be taken to enhance the detection of photons from lower wavelengths. Basically two concepts are discussed currently:
| |||||||||
RICH in simulations | ||||||||||
Changed: | ||||||||||
< < |
Electron identification | |||||||||
> > |
... will come soon ...
Ring radius resolutionElectron identification | |||||||||
Presentations | ||||||||||
Added: | ||||||||||
> > |
| |||||||||
RICH workgroup pages (login required)Internal pages: Follow this link | ||||||||||
Line: 91 to 106 | ||||||||||
| ||||||||||
Added: | ||||||||||
> > |
|
Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
The Ring Imaging Cherenkov Detector (RICH) | ||||||||
Line: 21 to 21 | ||||||||
Figure 1: Detector layout of RICH, positioned behind a large aperture dipole magnet with a silicon tracking system inside. The RICH will be followed by several transition radistion detectors serving for further electron identification and tracking. | ||||||||
Changed: | ||||||||
< < |
Combined with particle identification information from the other detectors, a pion suppression of 10![]() | |||||||
> > | Combined with particle identification information from the other detectors, a pion suppression of 10000 is required out of which a factor 100-1000 has to be provided by the RICH alone. High detection efficiency of electrons is also required which calls for 10-15 hits per electron ring at minimum. As global tracking has to connect tracks in the STS and TRD, therefore the RICH detector should not extend 3 m and and a material budget of 3-4 % radiation length in order to reduce multiple scattering. A large acceptance of 25° in the laboratory has to be covered to identify the vector mesons in a wide range of rapidity and transverse momentum. | |||||||
The current detector concept forsees (for more detailed information on the components see below):
| ||||||||
Changed: | ||||||||
< < |
| |||||||
> > |
| |||||||
Al+MgF![]()
| ||||||||
Line: 67 to 67 | ||||||||
Mirror | ||||||||
Changed: | ||||||||
< < | The most important consideration concerning the mirror material will come from global tracking simulations: STS and TRD tracks have to be connected with high precision which limits length and material budget of the RICH detector. The maximum length will determine the radius of curvature, and as the mirror gives the largest contribution to the material budget of the RICH, the maxium radiation length allowed for will determine wether glass mirrors can be used or a lightweight material such as carbon has to be used. | |||||||
> > | The most important consideration concerning the mirror material will come from global tracking simulations: STS and TRD tracks have to be connected with high precision which limits length and material budget of the RICH detector. The maximum length will determine the radius of curvature. And as the mirror gives the largest contribution to the material budget of the RICH, the maxium allowable radiation length will determine whether glass mirrors can be used or a lightweight material such as carbon has to be used. | |||||||
Added: | ||||||||
> > |
The coating should provide highest reflection for the full range of photons not absorbed in the gas and detected by the photodetector, i.e. down to about 150nm. The choice will thus be a Al+MgF![]() | |||||||
Photodetector |
Line: 1 to 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
The Ring Imaging Cherenkov Detector (RICH) | ||||||||||
Line: 19 to 19 | ||||||||||
![]() | ||||||||||
Added: | ||||||||||
> > | Figure 1: Detector layout of RICH, positioned behind a large aperture dipole magnet with a silicon tracking system inside. The RICH will be followed by several transition radistion detectors serving for further electron identification and tracking. | |||||||||
Added: | ||||||||||
> > |
Combined with particle identification information from the other detectors, a pion suppression of 10![]() | |||||||||
Changed: | ||||||||||
< < |
Design considerations | |||||||||
> > | The current detector concept forsees (for more detailed information on the components see below): | |||||||||
Changed: | ||||||||||
< < |
Radiator | |||||||||
> > |
| |||||||||
Changed: | ||||||||||
< < | The Ring Imaging Cherenkov detector (RICH) is designed to provide | |||||||||
> > |
RadiatorAs introduced above, the Ring Imaging Cherenkov detector (RICH) is designed to provide | |||||||||
electron identification in the momentum range of electrons from low-mass vector-meson decays, i.e. from lowest momenta up to 10-12 GeV/c. These requirements define | ||||||||||
Changed: | ||||||||||
< < | possible radiators for the RICH detector: Assuming that pions can | |||||||||
> > | possible gaseous radiators for the RICH detector; in addition it would be preferable if the gas is easy to handle, chemically passive and inflammable: Assuming that pions can | |||||||||
be separated from electrons up to 90% of the maximum Cherenkov
opening angle ![]() ![]() ![]() | ||||||||||
Line: 43 to 52 | ||||||||||
![]() | ||||||||||
Changed: | ||||||||||
< < |
Figure 1: Momentum threshold for Cherenkov light production for pions and kaons in dependence on ![]() ![]() ![]() ![]() ![]() | |||||||||
> > |
Figure 2: Momentum threshold for Cherenkov light production for pions and kaons in dependence on ![]() ![]() ![]() ![]() ![]() ![]() ![]()
![]()
![]() MirrorThe most important consideration concerning the mirror material will come from global tracking simulations: STS and TRD tracks have to be connected with high precision which limits length and material budget of the RICH detector. The maximum length will determine the radius of curvature, and as the mirror gives the largest contribution to the material budget of the RICH, the maxium radiation length allowed for will determine wether glass mirrors can be used or a lightweight material such as carbon has to be used. | |||||||||
Deleted: | ||||||||||
< < |
Mirror | |||||||||
Deleted: | ||||||||||
< < | The most important consideration concerning the mirror material will come from global tracking simulations: | |||||||||
Changed: | ||||||||||
< < |
Photodetector | |||||||||
> > |
Photodetector | |||||||||
The photodetector | ||||||||||
Line: 66 to 88 | ||||||||||
| ||||||||||
Changed: | ||||||||||
< < |
| |||||||||
> > |
|
Line: 1 to 1 | ||||||||
---|---|---|---|---|---|---|---|---|
The Ring Imaging Cherenkov Detector (RICH) | ||||||||
Changed: | ||||||||
< < | under construction | |||||||
> > |
| |||||||
Table of Contents | ||||||||
Line: 12 to 14 | ||||||||
RICH detector concept | ||||||||
Changed: | ||||||||
< < | The RICH detector will serve for electron identification from lowest momenta up to 10-12 GeV/c needed for the study of the dileptonic decay channel of vector mesons. In the current CBM detector layout the RICH would be positioned behind the magnet with the silicon tracking system (STS/MVD) and in front of the first transition radiation detector (TRD), see the figure below for a sketch: | |||||||
> > | The RICH detector will serve for electron identification from lowest momenta up to 10-12 GeV/c needed for the study of the dielectronic decay channel of vector mesons. In the current CBM detector layout the RICH would be positioned behind the magnet with the silicon tracking system (STS/MVD) and in front of the first transition radiation detector (TRD), see the figure below for a sketch: | |||||||
![]() | ||||||||
Line: 41 to 43 | ||||||||
![]() | ||||||||
Changed: | ||||||||
< < |
Momentum threshold for Cherenkov light production for pions and kaons in dependence on ![]() ![]() ![]() ![]() ![]() | |||||||
> > |
Figure 1: Momentum threshold for Cherenkov light production for pions and kaons in dependence on ![]() ![]() ![]() ![]() ![]() | |||||||
Mirror | ||||||||
Line: 62 to 64 | ||||||||
Internal pages: Follow this link | ||||||||
Changed: | ||||||||
< < |
| |||||||
> > |
| |||||||
|
Line: 1 to 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
The Ring Imaging Cherenkov Detector (RICH) | ||||||||||
Changed: | ||||||||||
< < | Information to be added soon | |||||||||
> > |
under construction | |||||||||
Changed: | ||||||||||
< < | -- VolkerFriese - 06 Dec 2006 | |||||||||
> > |
Table of Contents
| |||||||||
Added: | ||||||||||
> > |
RICH detector conceptThe RICH detector will serve for electron identification from lowest momenta up to 10-12 GeV/c needed for the study of the dileptonic decay channel of vector mesons. In the current CBM detector layout the RICH would be positioned behind the magnet with the silicon tracking system (STS/MVD) and in front of the first transition radiation detector (TRD), see the figure below for a sketch:![]() Design considerationsRadiatorThe Ring Imaging Cherenkov detector (RICH) is designed to provide electron identification in the momentum range of electrons from low-mass vector-meson decays, i.e. from lowest momenta up to 10-12 GeV/c. These requirements define possible radiators for the RICH detector: Assuming that pions can be separated from electrons up to 90% of the maximum Cherenkov opening angle![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() MirrorThe most important consideration concerning the mirror material will come from global tracking simulations:PhotodetectorThe photodetectorRICH in simulationsElectron identificationPresentationsRICH workgroup pages (login required)Internal pages: Follow this link
|