Feasibility study of Ω^- reconstruction with the CBM experiment at SIS-300

I. Vassiliev^{1,2}, I. Kisel², and V. Akishina³

¹Goethe University, Frankfurt am Main, Germany; ²GSI, Darmstadt, Germany; ³Moscow State University, Moscow,

Russia

One of the predicted signatures of a phase transition from nuclear matter to a deconfined quark gluon plasma phase is the enhanced production of multi-strange particles. Also, the yield of particles carrying strange quarks is expected to be sensitive to the fireball evolution. Consisting of 3 strange quarks, the Ω^- hyperon is one of the most interesting objects. It will be identified by its decay into charged hadrons, which are detected by the Silicon Tracking System (STS) and the Time-of-Flight detector (TOF) of the CBM experiment.

To study the feasibility of the Ω^- decay reconstruction with CBM, a set of 10k central Au+Au UrQMD events at 25A GeV were simulated. The Ω^- decays into $\Lambda + K^$ with a branching ratio of 67.8% and $c\tau = 2.46$ cm. Since the Ω^- is rare at 25A GeV central Au+Au UrQMD events (0.022 per event), in each UrQMD event a Ω^- decay into $\Lambda + K^-$, generated by PYTHIA, was embedded.

The STS geometry with 8 double-sided segmented strip detectors was used for track reconstruction; TOF is applied for proton identification. A decays most often happen inside the STS detector. In order to reconstruct the $\Lambda \rightarrow p\pi^-$ decay, each identified proton track was combined with every negatively charged track assuming the pion mass for the latter.

The Ω^- event reconstruction includes the usual steps de-

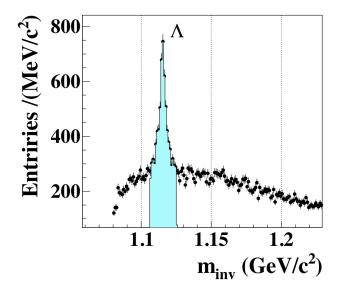


Figure 1: Secondary $\Lambda (\chi^2_{prim} > 5\sigma)$ candidates inside a $1.116 \pm 6\sigma$ window were used for the Ω^- reconstruction

scribed in [1]: fast track finding and fitting [2, 3], Λ search and selection of secondary Λ .

The selected secondary Λ candidates (Fig. 1) were combined with secondary negatively charged tracks assuming the kaon mass, $K^ (\chi^2_{prim}>7\sigma)$, and Ω^- -KFParticle were created. An Ω^- -KFParticle was accepted if showing a reasonable quality of the geometrical and topological detached vertex: $(\chi^2_{geo}<3\sigma,~\chi^2_{topo}<3\sigma)$ and z-vertex >3 cm downstream the target plane.

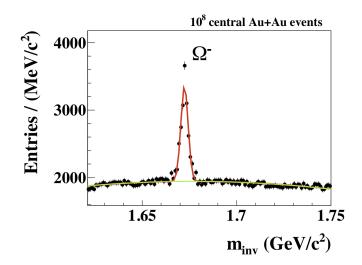


Figure 2: Reconstructed invariant-mass distribution of ΛK^- pairs. The Ω^- reconstruction efficiency is 0.55% at a S/B ratio of 0.4. The reconstructed mass value is 1.672 GeV/ c^2 . The red line shows a gaussian fit to the signal, the green line the polynomial background fit.

The invariant-mass spectrum is shown in Fig. 2. The Ω^- reconstruction efficiency is about 0.55% for central and about 2% for minimum bias events. The reconstructed mass value of $1.672 \pm 0.003 \text{ GeV}/c^2$ is in good agreement with the PDG's data used for the simulation. The invariant-mass resolution accounts for 2.3 MeV/ c^2 .

References

- I. Vassiliev, I.Kisel and M. Zyzak, CBM Progress Report 2009, Darmstadt 2010, p. 59
- [2] I. Kisel, Nucl. Instrum. Meth. A 566 (2006) 85
- [3] S. Gorbunov et al., Comp. Phys. Comm. 178 (2008) 374
- [4] M Zyzak and I. Kisel, *Vertexing status*, 14. CBM Collaboration Meeting, October 6-9, 2009, Split, Croatia