# Shower library

Mikhail Prokudin, ITEP

### Outline

- Reconstruction procedure
- Shower shape
  - 2 approaches
- Shower library
  - Volume merging
  - Errors
- Results and next steps

#### Procedure of $\gamma$ reconstruction

First approximation
energy
calibetion
position
S-curves

- Cluster unfolding
  - <u>shower shape</u>
     shower library

- LHCb like methods
- > Pure  $\gamma$ , no background
- Simple and easy to check
- Test site for shower library routines
- Can be done in few month
- ALICE-like methods
- Require much more effort
  - CALO parameters should be fixed?

From September 2006 CBM collaboration meeting

#### Shower shape

Analytical formula for shower shape approximation

- ALICE and PHENIX experience
- No memory consumption
  - Best for multicore CPU
- Poor quality for large incident angles
- Shower library
  - Fits exactly to the data
  - Requires a lot of memory
    - ► (and CPU!)
  - Any incident angle
- Shower width
  - Also needed for fitting procedure
  - Approximation or storing in library?



# Shower library

- ECAL with very high segmentation (1x1mm<sup>2</sup> volumes)
  - use one shower multiple times
  - volumes merging procedure
- Transport photons for every:
  - Energy
  - Theta
  - Phi

Eightfold decrease due to symmetry

For low energies we have to generate more showers

Larger fluctuations for low energy showers

- 10k for 0.49 GeV
- 2k for 16GeV



# Volumes merging

- During shower library creation
  - Also can store RMS (see next slide)
  - Bigger library size
  - Cell size fixed
    - Different data set for each cell size
  - Cluster size fixed

During reconstruction

- More CPU required during reconstruction
- Information about RMS is lost
  - Need analytical approximation for errors
- Homogenous dataset
  - Cell size not fixed

## Error treating

- Energy deposition in cluster cells are not independent
  - RMS value storing
- ► ALICE and PHENIX
  - Error ~sqrt(E<sub>i</sub>)
  - (1-E<sub>i</sub>/E<sub>0</sub>) for correlation treatment
    - E<sub>0</sub> measured cluster energy



34mm

h4

h5

## Shower library

- ► 170 Mb disk space ► 300 Mb in memory ▶ Energy: 0.49, 1, 2, 4, 6, 9, 12, 16 GeV ▶ Theta: 2°, 3.5°, 5°, 6.5°, 8°, 9.5°, 11°, 13°, 16°, 20°, 24°, <u>28°, 3</u>2°
- Phi: 0°, 10°, 20°, 30°, 40°



#### Next steps for shower library

Shower for E=16,  $\phi$ =0,  $\theta$ =32 Shower for E=16,  $\phi$ =40,  $\theta$ =32 20 20 10<sup>-3</sup>  $10^{-3}$ 15 15 10 10 10<sup>-4</sup> 10-4 **10**<sup>-5</sup> 10<sup>-5</sup> -5 -10 -10 10<sup>-6</sup> 10 20 15 20 -10 10 15 -10 5 10 -5 n 5 -5 n

- Rotation on fly
  - classical trade CPU vs. memory
    - Memory-CPU bottleneck
- Approximation
  - Are there any?