

Outline

- Motivation
- Experimental measurements
 - Experimental setup
 - Coordinate determination
 - Results for LHCb and preCBM prototype modules
 - muons and electrons
 - Light yield
- ▶ MC modeling
 - Thickness variation
 - Ray tracer
 - GEANT simulation
- Comparison with data
- Simple predictions for current CBM calorimeter

"Shashlik" technology

- Fast
 - 25-30ns trigger signal
 - TOF measurements
 - ▶ 120 ps e/y
 - ▶ 300 ps hadrons
- Radiation hardness
 - 2MRad leads to 1.5% constant term increase
- Easy segmentation
 - longitudinal
 - transverse
- Cheap

- Energy resolution
 - typical ~8%/sqrt(E)
 - constant term!

RD36 data Shashlik Tower Response

Methods to improve

- Sampling term
 - decrease thickness of absorber
 - ▶ increase scintillator mass ration
 - increase Moliere radius
 - more shower overlaps
 - decrease scintillator tiles thickness
 - photostatistics
- Constant term
 - increase thickness of scintillator tiles
 - technology
 - ▶ die mold price ~7k \$
 - model of light collection in calorimeter

- CBM case
 - Large background
 - Minimize Moliere radius
 - less overlapping showers
 - Keep resolution as good as possible
 - better S/B

Studies supported by INTAS 03-54-6272 INTAS 06-1000012-8914 INTAS 05-111-5257 RosAtom

Experimental setup

Coordinate determination

- Standard calibration procedure
 - Charge injection in certain points of the chamber
 - Delay wire chambers. A users guide. J.Spanggaard.
 - Shifts and scales can be corrected
 - Quality
- 3-rd chamber
 - track fitting
 - ▶ bad track rejecting

Coordinate determination

- Modify coefficients
 - residuals
 - ▶ keep 0 average
 - ▶ narrow
- ightharpoonup Cut $\chi^2 < 4$
 - denominator from "Delay wire chambers..." by J.Spanggaard.

Coordinate determination

Muons. Procedure

- energy only in central cell
- ► 1x1 mm² regions
- ► fit with Landau distribution
 - first fit to estimate ranges
 - second fit with
 - $\blacktriangleright f(x_{start}) = 0.4 * Max$
 - \blacktriangleright f(x_{end})=0.05*Max
 - no Landau Gauss convolution
 - much more statistics

Results. Mouns. LHCb

- Geometry:
 - 40x40mm cells
 - 16 fibers
 - 67x4mm scintillator layers
 - 66x2mm lead layers
- Light mixer!

Results. Muons. preCBM

- Geometry:
 - 40x40 mm cells
 - 16 fibers
 - 280x0.5 mm lead layers
 - 280x0.5 mm scintillator layers
 - **▶** extreme
 - ▶ for MC tuning

Electrons. procedure

- Collect energy in 3x3+4 cells
 - wide signals with if other 4 cells included
- ► 1x1 mm2 regions
- ► Iterative fit procedure

• $[-1.2\delta, +2\delta]$ region

50 GeV electrons. LHCb. Results

Geometry:

- 67x4mm scintillator layers
- 66x2mm lead layers

Different module!

Light yield measurements

- Procedure
 - measure LED signal amplitude and width by PMT
 - monitoring system!
 - Number of photoelectrons=Amplitude_{LED}/(Width_{LED})²
 - ▶ Poisson statistics
 - ▶ Other factors -> wider signal
 - underestimated number of photoelectors
 - width of pedestals subtracted
 - different LED amplitudes
 - Calibration
 - ► ADC count -> GeV

Light yield measurements

	Geometry	Scintillator/Lead volume ratio	Testbeam	Cosmic setup
Small	40x40x4mm ³ fiber per 1x1cm ²	2:1	3000	3100
Middle	60x60x4mm ³ fiber per 1x1cm ²	2:1	4200	3500
Large	120x120x4mm ³ fiber per 1.5x1.5cm ²	2:1	2500	2600
preCBM	40x40x0.5mm ³ fiber per 1x1cm ²	1:1	700	

MC modeling

- Signal nonuniformity
 - Scintillator tile thickness variations
 - ► Measured directly
 - Light collection nonuniformity
 - ► Special ray tracer program
 - Convolution with particle energy deposition
 - "natural" smearing
 - energy deposition nonuniformity
 - ▶ GEANT

Thickness variations

- ▶ Direct measurements with micrometer
- ► ~250 measured points per tile
- ► Spline extrapolation

Thickness measurements

Thickness measurements

"Bad" tile

Example of "good" tile

Traces on the surface are different for "good" and "bad" tiles!

Thickness measurements. Results

Ray tracer program. Requirements

- Quite complex geometry
 - Boolean shapes
- ► Large statistics
 - 10⁷ photons per measurement
 - ▶1% precision
 - ► ~3% light collection and transport efficiency
 - 200eV for scintillator photon
 - 10% of energy deposition visible
 - 20% photon to electron conversion probability in PMT
 - ► 10⁵ photons per GeV without light transport and collection
 - ~3000/GeV photoelectrons in PMT

CPU:

ITEP batch farm GSI batch farm

GRID

5x10⁴hx2.4 GHz spent 1x10⁴ jobs

Ray tracer program

- Optics
 - refraction
 - ► Fresnel formulas
 - reflection
 - ▶ mirror
 - ▶ diffuse
 - attenuation
 - ▶ in medium
 - on surface
 - all processes could depend on wavelength

- Geometry
 - Geometrical primitives
 - cylinder
 - **▶** box
 - Boolean operations
 - Voxelizaliton
 - ► for speedup

Voxelization. Surface quality

- Idea: small regions (0.5x0.5mm²)
 - list of excluded objects
 - sorted by distance list of objects
 - remove objects with distance larger then found
 - classical trade CPU/memory
- 2 materials
 - plastic
 - fully transparent
 - tyvek
 - ▶ 40% diffuse reflection
 - ▶ 60% black
 - tyvek(surface quality) + plastic(1-surface quality)

White paint

- Edges and edging
 - edging width require fine tuning
 - no mirror reflection or transparency
 - scaling coefficient introduced
 - one of the main parameters

Procedure

- ► 0.5x0.5mm² regions
- Photons generated uniformly
 - also on Z axis
 - isotropic
- Transported till photon absorption
- Reemission in fiber
 - isotropic
 - check angles (transport to PMT)

Example of ray tracer test

- Edge effect in light collection
 - dead material between tiles
 - not trivial
 - LHCb technology

Ray tracing. Results

preCBM prototype: 0.5mm thickness, no edging, surface quality 0.06

Ray tracing. Comparison with light yield

- Generate photons uniformly inside tile volume
- ► Take small LHCb tiles for normalization

	Testbeam	Cosmic setup	MC
Small	3000	3100	3000
Middle	4200	3500	3600
Large	2500	2600	2570
preCBM	700		600

Excellent middle module at testbeam?

GEANT model

- ► Tile model with holes and fibers
 - same as for ray-tracing
- ► Assemble the module
 - steel tapes
- Assemble the calorimeter wall
- Gorynych framework
 - for FLINT experiment
 - similar to FAIRROOT
 - code can easily used for modeling CBM calorimeter

Comparison with data

- Light collection efficiencies maps
 - 0.5x0.5mm² segmentation
- Calorimeter response with GEANT
 - 30KeV Geant3 cuts
 - 1.0x1.0mm² segmentation
 - converge with
 - ► light collection maps
 - ▶ thickness maps

- ▶ Free parameters
 - fraction of "bad" tiles in calorimeter
 - light collection
 - for LHCb
 - whiteness of edges and edging
 - size of edging
 - for preCBM prototype
 - surface quality of the tile

Muons. Fitting

- Fit with Landau distribution
 - first fit to estimate ranges
 - second fit with
 - \rightarrow f(x_{start})=0.4*Max
 - \rightarrow f(x_{end})=0.05*Max
- ► 1x1mm² regions

LHCb inner module

No light mixer in MC because of no Cherenkov light treating.

LHCb inner module

- Idea:
 - exclude central region
 - ▶ no light mixer
 - fit experiment with MC
 - normalization is only parameter
 - errors taken from fits
- Extracted parameters
 - Fraction of bad tiles 0.3
 - Whiteness of edge 1.13
 - Edging size 1.0mm
 - Surface quality n/r

Gray - MC, Black - data

LHCb outer module

- No thickness map
 - generated to be "alike" inner module
- Available experimental data scaled on one axis
- ► 1x2mm² regions
- Extracted parameters
 - Fraction of "bad" tiles 0.2
 - Whiteness of the edge 1.11
 - Thickness on edging 1.0mm
 - Surface quality n/r

preCBM prototype

- Extracted parameters
 - Fraction of bad tiles0.2
 - Edge whiteness n/r
 - Size of edging 0.0mm
 - Surface quality 0.06

Electrons. LHCb inner module

Electrons. LHCb inner module

- Extracted parameters
 - Fraction of "bad" tiles 0.3
 - Edge whiteness 1.13
 - Size of edging 2.0mm
 - Surface quality n/r

Summary

	LHCb muons	LHCb electrons	preCBM	LHCb large
Fraction of "bad" tiles	0.3	0.3	0.2	0.2
Edge whiteness	1.12	1.13	n/r	1.11
Size of edging	1.0mm	2.0mm	0.0mm	1.0mm
Surface quality	n/r	n/r	0.06	n/r

n/r means not relevant

CBM module (simple prediction)

- Geometry
 - 4x4cm² cells
 - ▶ all information available
 - 140 layers
 - ▶ 1mm scintillator
 - ▶ 1mm lead
- ► Take parameters from LHCb and preCBM modules
 - current technology
 - fraction of "bad" tiles 0.7
 - edge whiteness 1.12
 - size of edging 1.0mm
 - surface quality 0.06
- ▶ Thickness measurements from LHCb tiles
- Procedure described above

CBM module (simple prediction)

Nonuniformities

- Measured
 - LHCb
 - different geometry
 - different probes
 - preCBM prototype

- Modeled
 - light collection
 - ▶ ray-tracer code
 - GEANT
- Model crosschecked
 - same parameters
 - different geometries
 - different probes

- Results are consistent
- ▶ Non uniformities prediction
 - current technology
 - 15% nonuniformity with muons
 - 2% with 50GeV electrons

- Technology upgrade
 - surface quality
 - remove "bad" tiles
 - technology of tiles manufacturing!
 - adjust edge whiteness
 - can be controlled during production stage
 - light masking, die mold shape ...

Light yield measurements

- ► Idea: Relative width of LED signal in PMT only number of photoelectrons
 - Poisson statistics
 - Calibration for ADC counts -> GeV
 - Other factors: wide signal -> less photoelectrons
 - subtract width of pedestals

- Results
 - small (40x40mm² fiber per 1x1cm²) cells
 - **▶** 3000 (3100)
 - middle (60x60mm², fiber per 1x1cm²) cells
 - **►** 4200 (3500)
 - outer (120x120mm², fiber per 1.5x1.5cm²) cells
 - **►** 2500 (2600)
 - preCBM (40x40mm², fiber per 1x1 cm²)
 - **▶** 700