LMVM simulation with new beam pipe and shielding in SIS100 geometry

Ekata Nandy VECC, Kolkata

Performance study of SIS100-B geometry with new beam pipe and shielding

* shielding = segemented (using in simulations)

Old configuration

New configuration (Pb as part of beam pipe)

(From last presentation of Shabir)

Tools used

CBM Frame-Work

- CBMROOT(environment): VERSION JUL13p1
- FAIRSOFT-VERSION-dec13p1

Event Generators

- PLUTO: cocktail sources at 8 Agev
- URQMD: (version 3.3) To generate background events @8 AGeV Au + Au central collisions

GEANT3: Transport the particles through the CBM set-up

Geometry : SIS100

- MUCH: [4 Absorbers(1st absorber 60cm of Carbon)+4stations(all GEM)]
- STS: Standard (stations=8)
- TOF geometry: tof_v13b.root

Geometry (SIS100)

- STS+MUCH(4 absorbers+4GEM stations)+TOF
- STS: sts_v12b.geo.root
- MUCH: 60 cm (C+Pb) + (20+20+30) cm Fe, all GEMs
- ToF: tof_v13b.root

Yields at 8 AGeV

	ρ ⁰ (775MeV)	00 (783 MeV)	φ (1020 MeV)	ຐ (550 MeV)	η _D (550 MeV)	ထ _D (783 MeV)
Multiplicity (HSD)	9	19	0.12	16	16	19
BR(μμ channel)	4.55*10 ⁻⁵	9*10 ⁻⁵	2.87*10 ⁻⁵	5.6*10 ⁻⁶	3.1*10 ⁻⁴	1.3*10-4
Per event yield	4.09*10 ⁻⁴	1.71*10 ⁻³	3.44*10 ⁻⁶	8.96*10 ⁻⁵	4.96*10 ⁻³	2.47*10 ⁻³

Multiplicity from HSD Branching ratio from PDG

Cuts used

- MUCH hits>=11 • STS hits>=7 • $\chi^2_{much} < 1.3$ • $\chi^2_{vertex} < 2.0$ • $m^2 <= 0.05 \text{ GeV}^2/\text{C}^4$
- Events analysed : 500k
- Embedded (urqmd+pluto) events are transported through CBM detector using GEANT3 transport code.
- After reconstruction invariant mass of signal is calculated.
- Whereas, unembedded background (urqmd only) is calculated after reconstruction by SE technique combining oppositely charged tracks.

TOF information

TOF is used to reduce background ($m^2 >= 0.05 \text{ GeV}^2/C^4$)

Input cocktail from PLUTO @8 AGeV

Reconstructed Cocktail from old geometry

Reconstructed Cocktail from new configuration

Background

Efficiency of different particles from simulation

		ρ ⁰	ω	φ	η	η _D	ω _D
ncy(%)	New geometry	0.78	0.81	1.26	0.41	0.17	0.29
Efficie	Old geometry	0.76	0.82	1.21	0.41	0.15	0.27
)/B	New Geometry	0.007	0.28	0.014	0.01	0.005	0.006
S	Old geometry	0.007	0.27	0.014	0.01	0.005	0.006

Acceptance plot

Omega without tof ⁵E 100 4.5 4 80 3.5 pt 60 ~ 2.5 2 40 1.5 1 20 0.5 ٥<mark>٤....</mark> 1 0.5 1.5 2 2.5 pT 3 3.5 4 4.5 5 1 Omega with tof 5 E 90 4.5 80 4 70 3.5 60 3 50 ≻ 2.5 40 2 30 1.5 20 1 10 0.5 0 0 0 0 0.5 1.5 2 2.5 pT 3 3.5 4 4.5 5 1

Rho without tof

Point density (1st MUCH station)

Point density (2nd MUCH station)

Point density(3rd MUCH station)

Point density (4th MUCH station)

Summary

- There is almost no change in detection efficiencies of signals as well as no effect on background for two configurations (old and new).
- Point density for new configuration is less than old configuration which is expected as no gap is present in new configuration between beam pipe and Pb shielding and also between the shielding and absorber.
- MUCH shows good performance as far as cocktail (or low mass vector meson) detection is concerned at new configuration of SIS100 energies in our simulation studies.

